
International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 592

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

A Comparative Study on Efficiencies of Variants
of Convolutional Neural Networks based on

Image Classification Task.
Ayush Sharma

Abstract— Deep neural networks have shown their high performance on image classification tasks but meanwhile more training

difficulties. Due to its complexity and vanishing gradient, it usually takes a long time and a lot of computational resources to train deeper

neural networks. Deep Residual networks (ResNets), however, can make the training process easier and faster. And at the same time, it

achieves better accuracy compared to their equivalent neural networks. Deep Residual Networks have been proven to be a very

successful model on image classification. Deep neural networks demonstrate to have a high performance on image classification tasks

while being more difficult to train. We built two very different networks from scratch based on the idea of Densely Connected Convolution

Networks. The architecture of the networks is designed based on the image resolution of this specific dataset and by calculating the

Receptive Field of the convolution layers. We also used some non-conventional techniques related to image augmentation and Early

stopping to improve the accuracy of our models. The networks are trained under high constraints and low computation resources.

Index Terms— Data augmentation, Simple ConvNet, VGG16, Densenet-34, Densenet-50.

—————————— ——————————

1 INTRODUCTION

mage classification is a fundamental problem in computer
vision and machine learning. It has been attracting a lot of

researches on it. In recent years, there are many successful-
breakthroughs in the field of image classification.
Deep neural networks are the basis of state-of-the-art results for
image recognition, object detection, face recognition,speech
recognition, machine translation, image caption generation, and
driverless car technology.
The Convolutional Neural Networks (CNNs), in domains like
computer vision, mostly reduced the need for handcrafted fea-
tures due to its ability to learn the problem specific features
from the raw input data. However, the selection of dataset spe-
cific CNN architecture, which mostly performed by either expe-
rience or expertise is a time consuming and error prone process.
The CNN architectures, and recently datasets are categorized as
deep, shallow, wide, etc. A deep neural network is typically
updated by stochastic gradient descent and the parameters θ
(weights) are updated ∂l by θ t = θ t-1 − € ∗ ∂θ. where L is a loss
function and € is the learning rate. It is well known that too
small a learning rate will make a training algorithm converge
slowly while too large a learning rate will make the training
algorithm diverge. Despite the success of deep learning models,
our theoretical understanding about neural networks remains
limited. Careful selection of network width (number of neurons
in FC layers, number of filters in convolution layers) and net-
work depth (number of trainable layers) plays a vital role in
designing deep neural networks in order to obtain better per-
formance. Deep neural networks usually provide better results
in the field of machine learning and computer vision compared
to the handcrafted feature descriptors.
In this paper, we present our approach for building classifica-
tion models on the given data that has 90,000 training samples
belonging to 200 classes, each class having 450 training samples.
 Each training sample is a 64*64*3 (RGB) image. The validation

set consists of 10,000 samples and the testing set consist of an-
other 10,000 samples. It is to design the best model that catego-
rize the 10,000 testing images. We did not use any pre-trained
network available in standard libraries. Our biggest challenge
was low computation power provided by Google Colab free
services. Google Colab provides only 12 hours of continuous
computation time, after which the session needs to be recon-
nected. Also, we restricted our models from using any dense or
fully connected layers, any dropout layers. The rest of the report
is organized as follows : Analysis of Previous Works in section
II, The Convolution Operation in section III, Proposed Method-
ology in section IV, Results in section V, Error Analysis and
Deduction in section VI and Conclusion, Outlook and Future
Work with Scope of Improvements in section VII.

2 ANALYSIS OF PREVIOUS WORK

Deep convolutional neural networks have enabled the field

of image recognition to advance in an unprecedented pace
over the past decade. A. Krizhevsky, I. Sutskever, and G. E.
Hinton in their Imagenet classification with deep convolution-
al neural networks introduced AlexNet in 2012 which has 60
million parameters and 650,000 neurons. The model consists of
five convolutional layers, and some of them are followed by
max-pooling layers. To fight overfitting, their work proposes
data augmentation methods and includes the technique of
dropout in the model. The model achieves a top-5 error rate of
18.9% in the ILSVRC-2010 contest. A technique called local
response normalization is employed to help generalization,
which is similar to the idea of batch normalization given by S.
Ioffe and C. Szegedy in their work of Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. Around 2011, a good ILSVRC classification error

I IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 593

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

rate was 25%.
Inception module introduced by Szegedy use variable filter-
sizes to capture different visual patterns of different sizes, and
approximate the optimal sparse structure by the inception
module. Specifically, inception module consists of one pool-
ingoperation and three types of convolution operations With
thehelp of inception module, the network parameters can be
dramatically reduced to 5 millions which are much less than
those of AlexNet (60 millions) and ZFNet (75 mil-
lions).AlexNet achieved 16% error rate on the ImageNet chal-
lenge. In the next couple of years, with more and more layers
in neural networks, VGG19 with 19 layers and GoogleNet
with 22 layers reduced the error rates to a few percent. Alt-
hough CNNs have made some breakthrough on the accuracy,
they are hard to train for two reasons:

 First, the so called vanishing gradient problem the ef-
fect of multiplying n of those small numbers from ac-
tivation function to compute gradients in an n-layer
network, meaning that the gradient (error signal) de-
creases exponentially with n, thus the front layers
train very slowly.

 Second, CNNs usually have even more parameters in
their models, introducing more complexity, so takes
longer to train than just a dense network.

There are several Image Classification competitions such as
the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), where several convolution neural network architec-
tures and models are presented. In 2015, the ImageNet chal-
lenge was won by the ResNet model with 152 layers which
achieved a top-5 classification error of 3.57% And finally in
2015 comes the ResNet. The main difference in ResNets is that
they have shortcut connections parallel to their normal convo-
lutional layers. These shortcut are always alive and gradients
can easily propagate through them, resulting in faster training.
ResNet with 152 layers achieves the best results of 3% error
rate, which is even better than human judges.

3 THE CONVOLUTION OPERATION

Convolution is an operation on two functions of a real-valued
argument. Suppose we are tracking the location of a spaceship
with a laser sensor. Our laser sensor provides a single output
x(t), the position of the spaceship at time t. Both x and t are
real valued, that is, we can get a direct reading from the laser
sensor at any instant in time. Now suppose that our laser sen-
sor is somewhat noisy. To obtain a less noisy estimate of the
spaceships position, we would like to average several meas-
urements. Of course, more recent measurements are more rel-
evant, so we will want this to be a weighted average that gives
more weight to recent measurements. We can do this with a
weighting function w(a), where a is the age of a measurement.
If we apply such a weighted average operation at every mo-
ment, we obtain a new function s providing a smoothed esti-
mate of the position of the spaceship:

This operation is called convolution. The convolution opera-
tion is typically denoted with an asterisk : s(t) = (x ∗ w)(t).
Usually, when we work with data on a computer,time will be
discretized, and our sensor will provide data at regular inter-
vals. In our example, it might be more realistic to assume that
our laser provides a measurement once per second. The time
index t can then take on only integer values. If we now assume
that x and w are depended only on integer t, we can define the
discrete convolution:

In machine learning applications, the input is usually a multi-
dimensional array of data, and the kernel is usually a multi-
dimensional array of parameters that are adapted by the learn-
ing algorithm. We will refer to these multidimensional arrays
as tensors. We often use convolutions over more than one axis
at a time. For example, if we use a two-dimensional image as
our input, we probably also want to use a two-dimensional
kernel K:

Convolution leverages three important ideas that can help
improve a machine learning system:
1) Sparse interactions
2) Parameter sharing
3) Equivariant representations

3.1 CNN VS OTHER NETWORKS

Traditional neural network layers use matrix multiplication by
a matrix of parameters with a separate parameter describing
the interaction between each input unit and each output unit.
This means that every output unit interacts with every input
unit. Convolutional networks, however, typically have sparse
interactions(also referred to as sparse connectivity or sparse
weights). This is accomplished by making the kernel smaller
than the input. For example, when processing an image, the
input image might have thousands or millions of pixels, but
we can detect small, meaningful features such as edges with
kernels that occupy only tens or hundreds of pixels. This
means that we need to store fewer parameters, which both
reduces the memory requirements of the model and improves
its statistical efficiency. It also means that computing the out-
put requires fewer operations. These improvements in effi-
ciency are usually quite large. If there are m inputs and n out-
puts, then matrix multiplication requires (mxn) parameters,
and the algorithms used in practice have O(mn) runtime (per
example). If we limit the number of connections each output
may have to k, then the sparsely connected approach requires
only (kn) parameters an O(kn) runtime.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 594

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

Parameter sharing refers to using same parameters for more
than one function in a model. In a traditional neural net, each
element of the weight matrix is used exactly once when com-
puting the output of a layer. It is multiplied by one element of
the input and then never revisited. As a synonym for parame-
ter sharing, one can say that a network has tied weights, be-
cause the value of the weight applied to one input is tied to
the value of a weight applied elsewhere. In a convolutional
neural net, each member of the kernel is used at every position
of the input (except perhaps some of the boundary pixels, de-
pending on the design decisions regarding the boundary). The
parameter sharing used by the convolution operation means
that rather than learning a separate set of parameters for every
location, we learn only one set. This does not affect the
runtime of forward propagation it is still O(k n) but it does
further reduce the storage requirements of the model to k pa-
rameters.

3.2 RECEPTIVE FIELD(RF)

It is a local region (including its depth) on the output volume
of the previous layer that a neuron is connected to. This term
has been prevalent in Neurosciences since the study of Hubel
and Wiesel in which they suggested local features are detected
in early visual layers of the visual cortex and are then progres-
sively combined to create more complex patterns in a hierar-
chical manner. As an example, assume that the input RGB im-
age to a CNN has size [32 x 32 x 3]. For a filter size of 5 x 5,
then each neuron in the first convolutional layer will be con-
nected to a [5 x 5 x 3] region in the input volume. Thus, a total
of 5 x 5 x 3 = 75 weights (+1 bias parameter) needs to be
learned. Notice that RF is a 3D tensor with its depth being

equal to the depth of the volume in the previous layer. Here,
for simplicity, we discard the depth in our calculation.

3.3 Effective Receptive Field(ERF)

It is the area of the original image that can possibly influence the
activation of a neuron. One important point to notice here is
that RF and ERF are the same for the first convolutional layer.
However, they differ as we moves along the CNN hierarchy.
The RF is simply equal to filter size over the previous layer but
ERF traces the hierarchy back to the input image and indicates
the extent of the input image which can modulate the activity of

a neuron.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 595

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

3.4 Projective Field(PF)

It is the set of neurons to which a neuron projects its output.

4. Proposed Methodology

4.1 Analysis of the dataset
The given dataset consist of 200 different classes with
90,000 training samples and 10,000 validation samples. The
resolution of the images is just 64x64 pixels in RGB col-
orspace, which makes it more challenging to extract informa-
tion from it. A glance at the images shows that it is difficult
for the human eye to detect objects in some images. After
each epoch the validation loss and accuracy is evaluated on
the trained model.

4.2 Densenet vs Resnets

Recent work has shown that convolutional networks can be sub-
stantially deeper, more accurate, and efficient to train if they con-
tain shorter connections between layers close to the input and
those close to the output. In the Dense Convolutional Network
(DenseNet), it connects each layer to every other layer in a feed-
forward fashion. Whereas traditional convolutional networks
with L layers have L connectionsone between each layer and its
subsequent layer it has L(L+1)/2 for each layer, the feature-maps
of all preceding layers are used as inputs, and its own feature-
maps are used as inputs into all subsequent layers. DenseNets
have several compelling advantages: they alleviate the vanishing-
gradient problem, strengthen feature propagation, encourage
feature reuse, and substantially reduce the number of parameters.
We used the concept of DenseNet to design our model architec-
ture. The main challenge with very deep neural networks is the
problem of vanishing gradients. This problem was first overcome
by introducing residual networks which uses a shortcut connec-
tion to pass input from one block to another. In contrast to Res-
Net, DenseNet does not aggregate features through summation;
instead, they are combined by concatenation. Thus, the infor-
mation is passed from one layer to all the subsequent layers en-

suring better flow of information and gradients throughout
he network. Deep residual networks (ResNets) consist of many
stacked ”Residual Units”. Different from Resnet, a layer in
densenet receives all the outs of previous layers and concatenate
them in the depth dimension. In Resnet, a layer only receives
outputs from the previous second or third layer, and the outputs
are added together on the same depth, therefore it wont change
the depth by adding shortcuts. In other words, in Resnet the out-
put of layer of k is

x[k] = f (w ∗ x[k − 1] + x[k − 2]) (2)

, while in Densenet it is

x[k] = f (w ∗ H(x[k − 1], x[k − 2], · · · , x[1])) (3)

where H means stacking over the depth dimension. Besides,
Resnet makes learn identity function easy, while Densenet
directly adds identity function. Densenet is more efficient on
some image classification benchmarks. In Standard ConvNet,
input image goes through multiple convolution and obtain
high-level features.

In ResNet, identity mapping is proposed to promote the

gradient propagation. Element-wise addition is used.
In DenseNet, each layer obtains additional inputs from all
preceding layers and passes on its own feature-maps to all
subsequent layers. Concatenation is used.

4.3 Analysis of Deep Residual Networks

The ResNets developed are modularized architectures
thatstack building blocks of the same connecting shape. The
original Residual Unit performs the following computations:

y l = h(xl) + f (x l , Wl) (4)

x l+1 = f (yl) (5)

Here x1 is the input feature to the l th Residual Unit.

W l= {W l,k| 1 ≤ k ≤ K} is a set of weights (and biases)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 596

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

associated with the l th Residual Unit, and K is the number of
layers in a Residual Unit. ’f’ denotes the residual function, e.g.,
a stack of two 3x3 convolutional layers. The function f is the
operation after element-wise addition, ’f’ being a ReLU func-
tion. The function h is set as an identity mapping: h(xl) = x l . If
f is also an identity mapping: xl+1 ≡ yl , we can put Eqn.4 in
Eqn.5 and obtain:

x l+1 = x l + f (x l , Wl) (6)

Recursively,
(xl+2 = xl+1 +f (xl+1 , Wl+1) = xl +f (xl , Wl)+f (xl+1 , W l+1))

we have ,

for any deeper unit L and any shallower unit l. Eqn.8 exhibits
some properties like :

• The feature xL of any deeper unit L can be represented
as the feature xl of any shallower unit l plus a residual

function in a form of
indicating that the model is in a residual fashion between
any units L and l.

•The feature ,

of any deep unit L, is the summation of the outputs of all
preceding residual functions (plus x0). This is in contrast to
“a plain network” where feature x L is a series of matrix

VECTOR PRODUCTS,SAY,

4.4 Approach

The details of a simple ConvNet are as shown in Fig.9 and Fig.10.
The input output dimensions are shown in Fig.11. VGG16 was
publised in 2014 and is one of the simplest (among the other cnn
architectures used in Imagenet competition). It’s key characteris-
tics are:

1) This network contains total 16 layers in which weights
and bias parameters are learnt

2) A total of 13 convolutional layers are stacked one after
the other and 3 dense layers for classification

3) The number of filters in the convolution layers follow
an increasing pattern

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 597

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

4) The informative features are obtained by max pooling
layers applied at different steps in the architecture.

5) The dense layers comprises of 4096, 4096, and number of
classes nodes(200).

6) The cons of this architecture are that it is slow to train and
produces the model with very large size. VGG16 model is
shown in Fig.12. The model details of VGG16 is shown in

Fig.13 with layer connection shown in Fig.14.

For both of our residual networks, we implemented the num-
ber of layers in our model by first calculating the receptive
field shown in Fig.3. Throughout our model, we used (3x3)
kernels with strides (1,1). So, for the first layer, the receptive
field is (3x3) as each kernel convolutes over (3x3) pixels or 9
pixels at a time. Every such convolution operation decreases
the spatial dimensions of the matrix by 2, thus increasing the
receptive field of the network by 2. While at the MaxPooling
layer, the spatial dimensions of the matrix are reduced by half,
hence doubling the entire receptive field. The receptive field of
the networks is shown in Fig.16: As we reach the receptive
field of original image size 64x64, we expect our model to de-
tect the object in each image distinctly and be able to classify
them. However, we have gone further, to a receptive field of
more than double the original image size, so that network
learns the background details too. Many images in our dataset
are confusing due to background domination, so for those
images, we want our models to understand the context in
which our objects are found. For example, in the class bullfrog
we can observe that most of the images have a green back-
ground in addition to our object, i.e. bullfrog shown in Fig.17.
We want our network to learn that in addition to our object.

4.5 Model Design

In the beginning, without much effort, we implemented the
vanilla DenseNet-34 and DenseNet-50 models as our Network
1 and 2 respectively. For DenseNet-34, we achieved an accura-
cy of on the training set and 0.5576 with a batch size of 128
images running for 75 epochs. For DenseNet-50 we achieved
an accuracy of 0.6146 on the training set with a batch size of 60
images running for 75 epochs. Although this shows the learn-
ing power of DenseNet models, we notice an early saturation
in validation accuracy, due to the use of deep networks on
shallow datasets. Network 1 DenseNet-50:

1) We built a custom architecture of 3 bottleneck blocks
having 5 convolution layers of increasing channels and
1 MaxPooling layer at the end of each block.

2) Just before applying concatenation, we feed the output
of each block to space to depth function. This function
ensures that the spatial dimensions of both the layers
are equal before concatenation.

3) We concatenate the skip connections from the output of
each block with the output of the next block, preserving
the information from both the blocks before being fed
to the subsequent block.

4) The final layers in the model have 1x1 convolution
layer followed by a GlobalAveragePooling layer which
averages the spatial dimensions of a matrix of any size.
This layer gives us the ability to design a model which
can take input image of any size.

For Network 2(DenseNet-34) we modified the DenseNet-18
architecture as follows:

1) We used the first convolution layer that initially

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 598

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

consisted of 64 (7x7) filters with stride (2,2), by 32
(3x3) filters with stride (1,1) and removed the max
pooling layer.

2) We removed the 1st block consisting 4 convolution
layers of 64 (3x3) filters.

3) We removed the skip connections after every 2
convolution layers instead maintained it between every
4 convolution layers. We replaced the original add
function in shortcuts with concatenation so that it
preserves the channels from the previous block and
not merge them. We added a Batch Normalization and
ReLU activation layer after each shortcut.

4) As per requirement of the project, we replaced final FC
layers with 1x1 convolution layer for decreasing the
number of channels to the required number of classes
followed by a GlobalAveragePooling layer.

4.6 Image Augmentation

Deep CNNs are particularly dependent on the availability of large
quantities of training data. An elegant solution to alleviate the rela-
tive scarcity of the data compared to the number of parameters
involved in CNNs is data augmentation. Data augmentation con-
sists in transforming the available data into new data without alter-
ing their natures. The easiest and most common method to reduce
overfitting on image data is to artificially enlarge the dataset using
label-preserving transformations. We will employ four distinct
forms of data augmentation at training time, all of which allow
transformed images to be produced from the original images with
very little computation, so the transformed images do not need to
be stored on disk. In order to artificially increase the amount of
training data and avoid overfitting, we rely on image augmenta-
tion. For Network 1, we fed images with 32x32 resolutions for the
beginning few epochs followed by 64x64 resolution images. Then
we fed images with 16x16 resolutions for the next few numbers of
epochs and finally fed the model with 64x64 resolutions images.
We used the following augmentations:

• scale
• coarse dropout
• rotate
• additive gaussian noise
• crop and pad

For VGG16, ConvNet and DenseNet-50 we kept default 64x64 im-
age resolution as input size throughout our complete run. Instead
of applying image augmentations after a certain number of itera-
tions as in Network 1, we applied a random sequence of 11 trans-
formations. The intensity of each transformation was randomly
determined within a specified range, but these range parameters
were manually provided so that these transformed training images
could closely represent the images in the validation dataset. The
augmentations applied were :
• Horizontal Flip
• Vertical Flip
• Gaussian Blur
• Crop and Pad
• Scale

• Translate
• Rotate
• Shear
• Coarse Dropout
• Multiply

 * Contrast Normalisation

A group of eight randomly selected images with augmentation
is shown in Fig.28 and Fig.29.

4.7 Regularizers, Optimizers, Hyperparameters and
Callbacks

Batch Normalization helps to normalise the inputs of the previ-
ous layer at each batch keeping the values in a comparable range
with the mean equal to 0 and standard deviation equal to 1. This
ensures the activations of our models do not get skewed at any
one particular point and also increases the speed of computation.
For all the networks we applied Batch Normalization after every
convolution layer and then passed these values to the ReLU acti-
vation function. We used accuracy as our metric and categorical
cross-entropy as our loss function.

1) Optimizers used: Gradient Descent is the most basic but most
used optimization algorithm. Its used heavily in linear regression
and classification algorithms. Backpropagation in neural net-
works also uses a gradient descent algorithm. Gradient descent is
a first-order optimization algorithm which is dependent on the
first order derivative of a loss function. It calculates that which
way the weights should be altered so that the function can reach a
minima. Through backpropagation, the loss is transferred from
one layer to another and the model parameters also known as
weights are modified depending on the losses so that the loss can
be minimized. Update rule is:

θ t+1 = θ t − η ∗ ∇ J(θ t) (9)

However, it may trap at local minima. Weights are changed after-
calculating gradient on the whole dataset. So, if the dataset is too
large than this may take long time to converge to the minima and
this require large memory. Using GD causes resource exhaust
error. The error due to large batch size(>64) is shown in Fig.30.

Stochastic Gradient Descent goes over the entire data once be-
fore updating the parameters.

θ t+1 = θ t − η ∗ ∇ J (θt ; x(i), y(i)) (10)
where x(i) ,y(i) are the training examples.

Mini-Batch Gradient Descent where the dataset is divided into
various batches and after every batch, the parameters are updat-
ed.

θ t+1 = θ t − η ∗ ∇ J (θt; B(i)) (11)
B(i) are the batches of training examples.

Momentum based Gradient Descent accelerates the convergence
towards the relevant direction and reduces unnecessary oscilla-
tions to the irrelevant direction. In the regions of gentle slope it is

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 599

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

able to take large steps. However, it may run past the global min-
ima. It is an exponential weighted average method.

update t = γ ∗ update t-1 + η ∗ ∇ θ(t) (12)
θ t+1 = θ t − update t (13)

Nesterov Accelerated Gradient Momentum may be a good-
method but if the momentum is too high the algorithm may miss
the local minima and may continue to rise up. So, to resolve this
issue the NAG algorithm was developed. It is a look ahead meth-
od.

w look_ahead = w t − γ ∗ update t-1 (14)
update t = γ ∗ update t-1 + η ∗ ∇ w look_ahead (15)
w t+1 = w t − update t (16)

Gradient Descent with Adaptive Learning Rate is generally
used when the input feature vectors are largely sparse in na-
ture i.e. its value is 0 for most inputs. Gradients will not be
updated and therefore learning will fail. We decay the learn-
ing rate for parameters inversely proportional to their update
history.

For dense features with time η will decrease and for sparse
features η will increase.
RMSprop: In Adagrad the decay of the learning rate is more
aggressive and as a result after a while the parameters will
start receiving very small updates of the decayed learning
rate. To avoid this decay the denominator in η and prevent its
rapid growth.

Adam Adaptive Moment Estimation works with momentum
of first and second order. The intuition behind the Adam is
that we don’t want to roll so fast just because we can jump
over the minimum, we want to decrease the velocity a little bit
for a careful search. In addition to storing an exponentially
decaying average of past squared gradients like AdaDelta,
Adam also
keeps an exponentially decaying average of past gradients
m(t). m(t) and v(t) are values of the first moment which is the

Mean and the second moment which is the uncentered vari-
ance of the gradients respectively.

We used ReduceLRonPlateau as a callback function for reduc-
ing the learning rate if validation loss stagnates for 5 epochs.
We used L2 kernel regularizer with a lambda value of 2e-4. As
Google Colab notebook is restricted to 12 hours of continuous
use, for both the model runs we used a Model Checkpointer to
save the model with best validation accuracy as we had to run
over 100 epochs for each network.
As shown in Fig.31 by monitoring the validation loss we
stopped our training near to the minima. By changing min
delta i.e. a threshold to whether quantify a loss at some epoch
as improvement or not. If the difference of loss is below min
delta , it is quantified as no improvement. Another parameter
is patience that represents the number of epochs before stop-
ping once the validation loss starts to increase (stops improv-
ing). This depends on the implementation, if used very small
batches or a large learning rate the loss will be zig-zag (accu-
racy will be more noisy) so better set a large patience argu-
ment. If you use large batches and a small learning rate your
loss will be smoother so you can use a smaller patience argu-
ment. In our case the patience parameter was set to 20.
Batch Normalization is usually the first step of data prepro-
cessing. Global data normalization transforms all the data to
have zero-mean and unit variance. However, as the data flows
through a deep network, the distribution of input to internal
layers will be changed, which will lose the learning capacity
and accuracy of the network. Batch Normalization (BN) intro-
duces a a normalization step that fixes the means and vari-
ances of layer inputs where the estimations of mean and vari-
ance are computed after each mini-batch rather than the entire
training set. Suppose the layer to normalize has a d dimen-
sional input, i.e. x = [x 1 , x 2 , · · · , x d] T . We first normalize
the k-th dimension as follows:

where μ B and δ2
B are the mean and variance of mini-batch

respectively, and € is a constant value.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 600

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

L2-norm regularization modifies the objective function by
adding additional terms that penalize the model complexity.
Formally, if the loss function is L(θ, x, y), then the regularized
loss will be:

E(θ, x, y) = L(θ, x, y) + λR(θ) (27)
where R(θ) is the regularization term, and λ is the regulariza-
tion strength.

After every epoch or if the validation loss decreases, the
weights of the model are stored as Hierarchical Data Format
version 5 as the model is complex and has millions of parame-
ters.

5 RESULTS

For the network simple covnet we trained our model with 40

Million parameters for 108 epochs with a batch size of 60 im-

ages shown in Fig.34. The predicted and true classes are

shown in Fig.35 and Fig.36. Predicted class labels are shown in

Fig.37. Metrics like precision, recall and f1-score is given in

Fig.38.

For the network VGG16, we trained our model with 40 Mil-

lion parameters for 75 epochs with a batch size of 128 images

shown in Fig.39, Fig.40 and Fig.41. Note that validation loss

did not improve from 2.52.

For the network DenseNet-34, we trained our model with 11.8

Million parameters for 75 epochs with a batch size of 128 im-

ages. Training accuracy, loss, validation accuracy and loss is

shown in Fig.45 Here, in Fig.45 the validation loss did not im-

prove from 2.10. For the network DenseNet-50, we trained our

model on 17.8 Million parameters for 75 epochs with a batch

size of 64 images. Training accuracy, loss, validation accuracy

and loss is shown in Fig.49 Here, in Fig.45 the validation loss

did not improve from 2.94.

6 ERROR ANALYSIS AND DEDUCTION

Some interesting deductions can be made by observing the
error pattern. Models were not able to identify between an
’Egyptian cat’ and ’Tabby cat’. Same for ’Labrador retriever’
with ’Golden retriever’, ’Sports car’ with ’convertible cars’ i.e.
it was not able to distinguish between subclasses. These errors
were due to low resolution of the images. Another observation
that can be made was in the correctly classifed class, there was
a clear distinction between the object and the background. The
model performs very well on detecting objects that cover the
entire 64x64 resolution and has a minimal background.
Though for some classes the model was able to detect zoomed
in and zoomed out object. This could be because we fed low-

resolution images and used the scaling augmentation. In the
incorrectly classified images, since there are not many details
in the images, given the low resolution of 64x64, the model can
detect the type of the object (such as a dog), but unable to fur-
ther sub-classify it into the correct class (such as Labrador re-
triever and Golden retriever).

7 CONCLUSION,OUTLOOK AND FUTURE WORK WITH

SCOPE OF IMPROVEMENTS

Deep CNNs have made breakthroughs in processing image,
video, speech and text. In this paper, we have given an exten-
sive survey on recent advances of CNNs. We have discussed
the improvements of CNN on different aspects, namely, layer
design, activation function, loss function, regularization, op-
timization and fast computation. Beyond surveying the ad-
vances of each aspect of CNN, we have also introduced the
application of CNN on many tasks, including image classifica-
tion, object detection, object tracking, pose estimation, text
detection, visual saliency detection, action recognition, scene
labeling, speech and natural language processing. Although
CNNs have achieved great success in experimental evalua-
tions, there are still lots of issues that deserve further investi-
gation. Firstly, since the recent CNNs are becoming deeper
and deeper, they require large-scale dataset and massive com-
puting power for training. Manually collecting labeled dataset
requires huge amounts of human efforts. Thus, it is desired to
explore unsupervised learning of CNNs. Meanwhile, to speed
up training procedure, although there are already some asyn-
chronous SGD algorithms which have shown promising result
by using CPU and GPU clusters, it is still worth to develop
effective and scalable parallel training algorithms. At testing
time, these deep models are highly memory demanding and
time consuming, which makes them not suitable to be de-
ployed on mobile platforms that have limited resources. It is
important to investigate how to reduce the complexity and
obtain fast-to-execute models without loss of accuracy. Fur-
thermore, one major barrier for applying CNN on a new task
is that it requires considerable skill and experience to select
suitable hyperparameters such as the learning rate, kernel siz-
es of convolutional filters, the number of layers etc. These hy-
per-parameters have internal dependencies which make them
particularly expensive fortuning. Recent works have shown
that there exists a big room to improve current optimization
techniques for learning deep CNN architectures. We wish to
confirm our sincere and heartfelt gratitude to all our esteemed
mentors without whose guidance this course and project
would not have been successful.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 601

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

 Fig. 11. Layer connection in simple covnet.

 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 602

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

Fig. 14. Inter layer connection and their input-output dimensions count of

a VGG16 network

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 603

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 604

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

Fig. 21. Inter layer connection with i/p, o/p dimensions for DenseNet-50

model

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 605

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 606

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

Fig. 25. Inter layer connection with i/p, o/p dimensions for DenseNet-34

model

 Fig.27.Input ,output dimensions for VGG16 model

Fig. 30. The dotted line shows the sweet spot where the training must stop

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 607

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

 Fig. 31. Figure shows how data is managed in hierarchical format.

 Fig. 32 Figure shows a weight matrix(10X10)

 Fig. 33. precision, recall and f1-score using simple covnet

 Fig. 34. Precision, recall and f1-score of VGG16 model

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 10, October-2020 608

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

 Fig. 35. Precision, recall and f1-score for model resnet-34

 Ayush Sharma is currently pursuing bachelors degree program in Computer
Science and Engineering in Vellore Institute of Technology,Vellore,Tamil Nadu,
India, PH-7061870355. E-mail: ayushsharma.2k1@gmail.com

 Fig. 36. Precision, recall and f1-score for model densenet-34

IJSER

http://www.ijser.org/

